# Insecticide resistance in major arbovirus vectors: status, challenges and prospects





# Insecticide resistance in major arbovirus vectors

Vectors of arboviruses...

Ae. albopictus and Ae. aegypti = key vectors

Widespread and invasive

Major arbovirus vectors (dengue, chikungunya, zika, ...)

Limited vaccine-based strategies (efficiency / availability)

## Arbovirus control mainly relies on vector control

Multiple integrated control tools ... toward greener strategies

But... chemical control still represents a key component of vector control worldwide

#### **Chemical insecticides for Aedes control**

Multiple chemical classes used since WW2...

Progressive shift to pyrethroids (PYR) for Aedes control since 2000s + additional selection pressures (agriculture, at home, private resorts...)

















# **Dynamics of insecticide resistance in Arbovirus vectors**







https://aedes.irmapper.com

- Global rise of insecticide resistance in arbovirus vectors
- Resistance to all insecticides families (OC, OP, Carb, PYR, ...)
- → In 2020, resistance to insecticides found in >57 countries at risk of Aedes-borne diseases

# Status of PYR resistance in *Aedes aegypti*







- Pyrethroid resistance occuring worldwide (still few data from Africa)
- High PYR resistance levels in the Americas and Asia
- → can significantly impact vector control efficacy



# Status of PYR resistance in *Aedes albopictus*





- Limited resistance data in public databases (Americas, Africa, ...)
- PYR resistance currently rising, in different continents
- → Still time to implement resistance management ?

# Insecticide resistance mechanisms in major Aedes vectors



#### **Cuticle resistance**

not well characterized in Aedes

#### **Target-site resistance**

- PYR and DDT (VGSC gene, Kdr mutations)
- Cyclodienes (Gaba-R gene, Rdl mutation)
- Carb and OP (Ace1 mutation)
- → 2 successive mutation events required for G119S mutation (Weill et al. 2004, Curr Biol)

#### **Metabolic resistance**

Detoxification: P450s, CCEs, GSTs, UDPGTs, ... + altered transport / sequestration / excretion

- OP/Carb → mainly detoxification (no ace1 mutation)
- PYR → kdr mutations + detoxification ...

What role for cuticle resistance? (broad spectrum / cross-resistance)

## Molecular markers of insecticide resistance in Aedes

**Target site mutations** 

| ranger one matations |                  |             |                |  |  |
|----------------------|------------------|-------------|----------------|--|--|
| insecticides         | mutations        | Ae. aegypti | Ae. albopictus |  |  |
| OP /Carb             | Ace1 (G119S) no? |             | no ?           |  |  |
| Cyclodienes          | Rdl (A302S)      | yes         | yes            |  |  |
| PYR (DDT)            | Kdr V410L        | yes         | ?              |  |  |
|                      | Kdr L982W        | yes (new)   | ?              |  |  |
|                      | Kdr S989P        | yes         | ?              |  |  |
|                      | Kdr I1011M       | yes         | ?              |  |  |
|                      | Kdr V1016G/I     | yes (G/I)   | yes (G)        |  |  |
|                      | Kdr F1534C       | yes         | yes            |  |  |



- Robust DNA markers
- Need to consider haplotypes



Kasai et al 2022, Sci Advances

(aegypti)

#### **Detoxification enzymes**

| insecticides | family | gene       | Ae. aegypti | Ae. albopictus |
|--------------|--------|------------|-------------|----------------|
| DDT          | GST    | GSTE2      | yes         | ?              |
| ОР           | CCE    | CCEAE3A/6A | yes         | yes            |
| PYR          | P450   | CYP6BB2    | yes         | ?              |
|              |        | CYP6P12    | yes         | CYP6-like?     |
|              |        | CYP9M9     | yes         | ?              |
|              |        | CYP9J28    | yes         | ?              |
| Carb         | P450?  | ?          | ?           | ?              |

- Over-transcription (RNA)

- Increased gene copy number (DNA)



(aegypti and. albopictus)

- → Good set of markers in Ae. aegypti... but very few in Ae. albopictus
- → No validated cuticle markers
- → Resistant populations often combine multiple mechanisms!

# Tigerisk: Characterizing PYR resistance in Ae. Albopictus

**Funding** 









- Improve PYR resistance surveillance
- Characterize resistance markers (beyond kdr mutations)
- Develop novel molecular diagnostic tools















#### Five regions studied



Europe Metropolitan France







**Indian Ocean** La Réunion





**SE Asia** Laos/Cambodia





Europe Italy





Africa Gabon/CAR



#### Four tasks

- 1 Perform bioassays (deltamethrin) in sentinel sites form each region
- 2 Purify resistance alleles from each region (lab selection)
- Identify resistance markers (integrated NGS approach)
- 4 Monitor resistance markers in the field...



# **Task1: Bioassays on sentinel populations**

- 6-8 pop / region (France, La Réunion, SE Asia) + published data
- Deltamethrin bioassays
- → No phenotypic resistance in France (metropole) and Laos
- → Moderate resistance in Cambodia (+ Africa, Italy, ...)
- → Significant resistance in La Reunion island



Ngoagouni et al 2016, P & Vectors, Pichler et al 2015, Pest Man Sci, ...



# Task2: purifying resistance alleles by selection

- One composite population per region
- Deltamethrin selection (>50% mortality)
- Comparative bioassays (Non-Sel Vs selected Delta)









Bacot et al, in prep

Resistance alleles rapidly selected in most lines

- → resistance alleles already circulating in all continents ...?
- → kdr and/or metabolic resistance (region-specific)

# **Next step...** identifying resistance alleles by NGS

#### **Experimental design**

- Susceptible reference lines
- Non-selected lines
- Delta-selected lines
- Field resistant populations (La Réunion)



#### **Genomics studies**

Whole Genome Pool-seq + RNA-seq

→ NGS data produced, bioinformatics in progress...

#### resistance marker set



data integration (regions)





by

region

WG sequencing

Polymorphisms CNVs, TEs...



data integration (molecular markers)

# RNA-seq

Gene expression levels Differential splicing





# **Conclusions - Next challenges**

#### A robust molecular resistance marker panel in Aedes

- → Covering all mechanisms?
- → How many markers to catch the entire resistance phenotype?
- → toward DNA markers?

Ce

en

Sci

S

P  $\mathbf{m}$ 

#### How resistance affects arbovirus control globally?

- → Impact on arbovirus transmission (Immunity, host-virus interactions)
- → Impact on other VC tools (IGRs, Bti, Wolbachia, densoviruses, SIT, ...)

# **ASIA** S989P D1763Y V1016G L982W I1011V F15340 G923V NAMERICAS. V1016I

Moyes et al. 2017 Plos NTD (WIN network)



# Improve resistance tracking

- → Integrated surveillance frameworks (robust, standardized, sustainable,, ...)
- → Resistance databases (update, maintain, share, ...)

### Improve resistance management

- → Detect resistance earlier
- → better evaluate its impact on arbovirus control
- → Develop alternative (greener) control tools and novel biocides/synergists
- → Improve decision making process (from surveillance to action)





# **Aedes resistance - Take-home messages**

- Chemical insecticides → still a key component of vector control
- Resistance widespread in Ae. aegypti and rising in Ae. albopictus
- Resistance can affect vector control efficacy

- > Research still needed! (surveillance, management, + new tools)
- → All actors working together at a global scale (networking!)

@thankyou;)