

1st Symposium on "Research and Innovation for the control of vectors of emerging arboviruses"

Agropolis International - Montpellier
14 February 2023

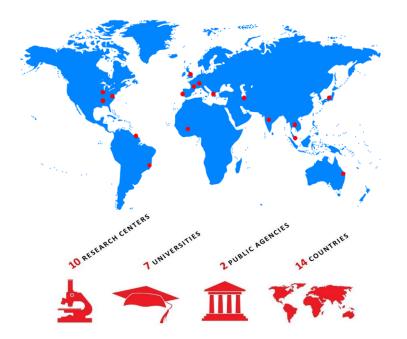
The Worldwide Insecticide resistance Network (**WIN**)

The Research and InNOvation Partnership for enhancing the surveillance and control of mosquito VECtors of emerging arboviruses (**INOVEC**)

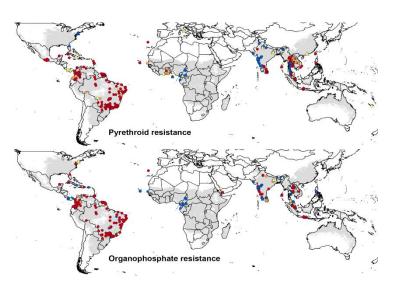
Vincent CORBEL

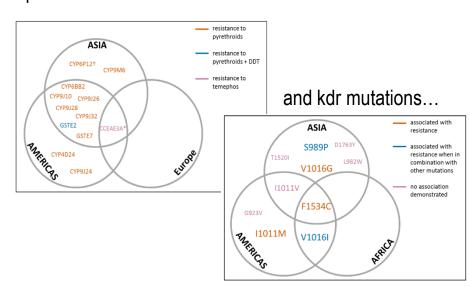
Research Professor at IRD,
Associate researcher at FIOCRUZ-IOC


Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN)

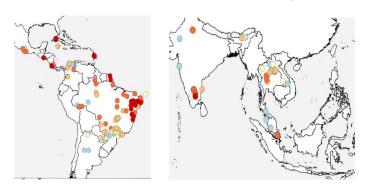


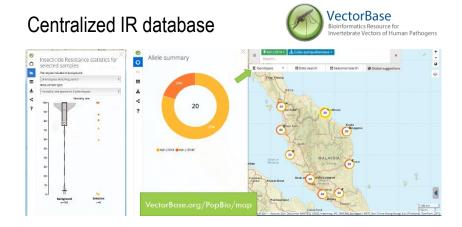
- Establishing a global resistance surveillance network arbovirus vectors
- Filling knowledge gaps identify research priorities on insecticide resistance
- Assisting WHO and national authorities in decision-making for IR management


Mapping Aedes resistance

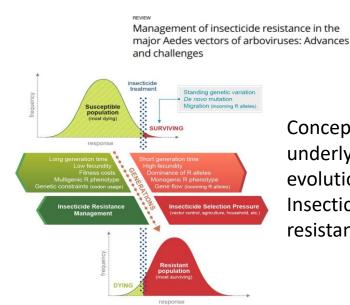

BENTEN

Contemporary status of insecticide resistance in the major *Aedes* vectors of arboviruses infecting humans


Global distribution of PYR & OP resistance

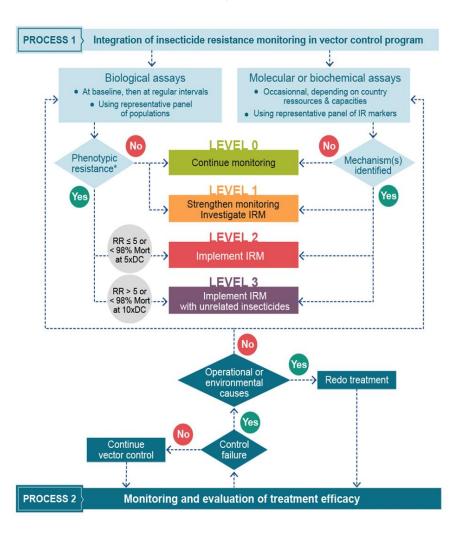

Dispersion of metabolic resistance markers

Temephos resistance per WHO region



Moyes et al. Plos NTD 2017

Insecticide resistance management (IRM)


PLOS NEGLECTED TROPICAL DISEASES

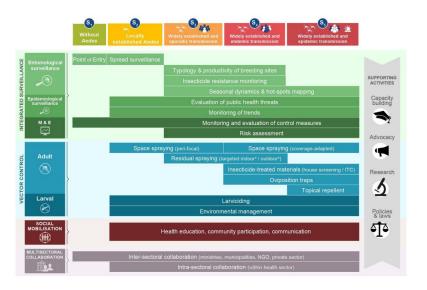
Concepts underlying the evolution of Insecticide resistance

Advantages and drawbacks of detection methods

Methods	Advantages	Disadvantages
Biological assays		
Diagnostic concentrations	Standardized Simple and rapid to perform Detect resistance phenotype	Lack of sensitivity No information on level or type of resistance Few diagnostic doses available for <i>Acdes</i> spp. Require live mosquitoes Require universal quality insecticides
Dose-response assays	Measure resistance levels	Require large number of live mosquitoes Require a susceptible reference colony
Assays using synergists	Information on the potential mechanisms responsible for resistance	Lack of sensitivity and specificity Require large number of live mosquitoes
Biochemical assays measuring enzyme activities	Information on mechanisms responsible for resistance Several mechanisms tested on a single individual	Require a cold chain Not available for all resistance mechanisms Lack of sensitivity/specificity
Molecular assays to detect resistant alleles	Very sensitive Several mechanisms tested on single individuals Detect recessive alleles and provide an "early warning" of future resistance	Require specialized and costly equipment Only available for a limited number of resistance mechanisms Are not always easily linked to resistance levels

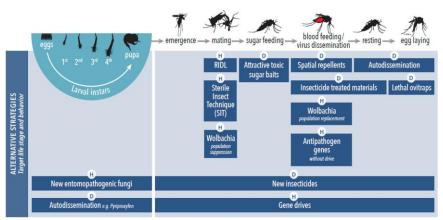
Framework for implementation of IRM

Dusfour et al. Plos NTD 2018


Other publications

REVIEW

Integrated *Aedes* management for the control of *Aedes*-borne diseases


David Roiz₀¹*, Anne L. Wilson², Thomas W. Scott³, Dina M. Fonseca⁴, Frédéric Jourdain¹, Pie Müller^{5,6}, Raman Velayudhan⁷, Vincent Corbel¹*

"A comprehensive evidence-based guidance on how and when to implement Aedes control measures tailored to local entomological and epidemiological risk scenarios" **REVIEW**

Alternative strategies for mosquito-borne arbovirus control

Nicole L. Achee 1, John P. Grieco¹, Hassan Vatandoost², Gonçalo Seixas³, Joao Pinto³, Lee Ching-NG⁴, Ademir J. Martins⁵, Waraporn Juntarajumnong⁶, Vincent Corbel⁷, Clement Gouagna⁷, Jean-Philippe David⁸, James G. Logan^{9,10}, James Orsborne⁹, Eric Marois¹¹, Gregor J. Devine¹², John Vontas^{13,14}

Anticipated Impact of Intervention on Resistance Mitigation

H High

Dependent on Active Ingredient

"An overview of alternative VC strategies for the control of arbovirus mosquitoes and their anticipated impact on resistance mitigation"

WIN Supporting activities

☐ Conferences (Rio 2016 & Singapore 2018)

Parasites & Vectors

MEETING REPORT

International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil

MEETING REPORT

Second WIN International Conference on "Integrated approaches and innovative tools for combating insecticide resistance in vectors of arboviruses", October 2018, Singapore

WHAT'S NEXT?

Expand WIN activities in **South America** to provide MS with **technical and scientific support** to respond to the increasing threat of IR

□ WHO reports, guidelines, SOPs, etc

« to strength the Regional Network for monitoring of Insecticide Resistance in vectors"

1st WG meeting, May 2023 at FIOCRUZ-IOC

A Research & InNOvation Partnership for enhancing the surveillance and control of mosquito VECtors of emerging arboviruses (INOVEC)

<u>Objective</u>: To promote cross-sectoral, multidisciplinary and international collaborations to enhance and promote scientific and technical knowledge on the surveillance and control of mosquito vectors of emerging arboviruses

12 countries21 institutions5 privates1 Int. Organization

<u>Participants</u>

Scientific exchanges to contribute to R&I

A total of 344 PM to support mobility of students, scientists, managerial & technical staff

Main missions

- Contribute to undergraduate and postgraduate teaching programmes
- Supervise students/post doc during their research activities.
- Contribute to lab and field works to generate scientific evidence, concepts/methods and contribute to data collection, analysis, interpretation & dissemination.
- Contribute to reinforcement of partner capacity, transfer of knowledge and technology
- Networking activities including organization of workshops and conferences

Work packages activities and outputs

Key objectives

☐ Promote new skills, knowledge acquisition and career development for the research staff and the entrepreneurs in Europe and Beyond

☐ Create novel product development pathways by stimulating connections between companies, biologists and social scientists working on vector control and surveillance

☐ Facilitate knowledge sharing by advising decision makers and disseminating necessary evidence to accelerate access to high-quality vector control products

□ Contribute to the societies' health and well-being by advocating a judicious, rationale, and integrated use of innovative Vector Control tools

Thank you for your attention!

inovec.office@ird.fr Inovec.event@ird.fr

Objectives

☐ Facilitate knowledge sharing by advising decision makers and disseminating necessary evidence to accelerate access to high-quality vector control products

☐ Give access to knowledge by raising public awareness on Aedes and Aedes-borne diseases through the engagement of communities and dissemination of results through adequate streams (open sciences) and educational materials.

□ Contribute to the societies' health and well-being by advocating a judicious, rationale and integrated use of vector surveillance and control tools according to regulatory constraints and environmental considerations and local capacities.

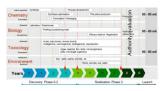
Context & background

60% of the world populations at risk of 1 or more ABDs (Rucker et al2017)

Global changes expose humans to new and re-emerging threats

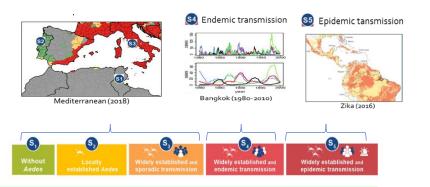
Aedes distribution is the widest ever recorded in history (kreamer 2015& 2019)

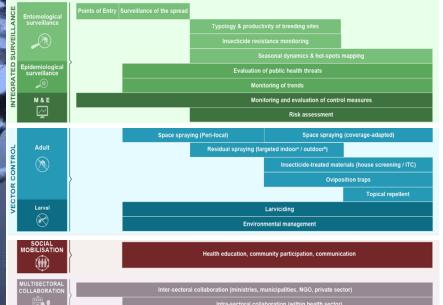
Lack of commitment and political will to sustain vector control (WHO GVCR 2017)

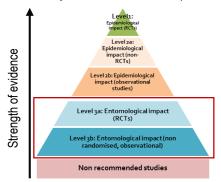

Lack of robust evidence to support most of Aedes vector control measures (Cochran reviews, Roiz et al 2019)

Aedes resistance to PHPs reported in > 57 countries (Moyes et al2017), including the EU

Lack of investment in new insecticides, increase environmental & and regulatory constraints, aversion of citizen to the use of PHPs, etc

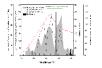


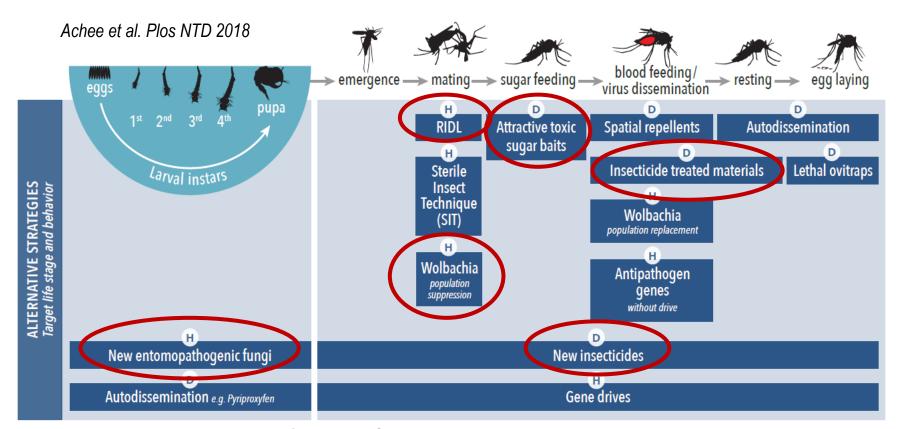

Integrated Aedes Management (IAM)


Integrated Aedes management for the control of Aedes-borne diseases

A portfolio of operational actions tailored to different epidemiological and entomological risk scenarios

Evidence base (>20 meta analysis & systematic reviews)

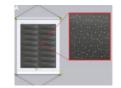




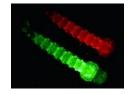
Alternative strategies

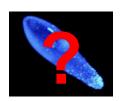
EVIEW

Alternative strategies for mosquito-borne arbovirus control


Anticipated Impact of Intervention on Resistance Mitigation

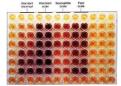
H High Dependent on Active Ingredient

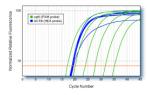




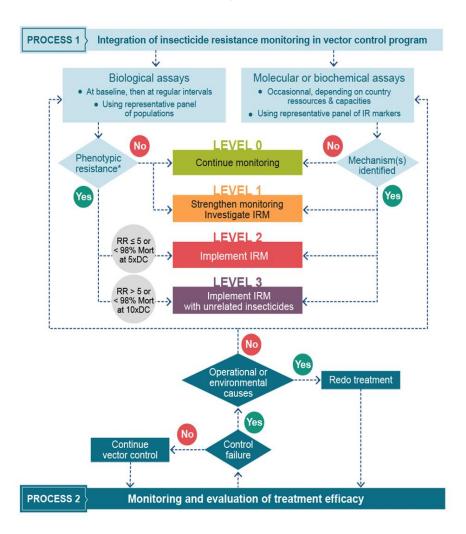
(G2, Royal guard, Sumishield, eave tubes)

Insecticide resistance management (IRM)


REVIEW

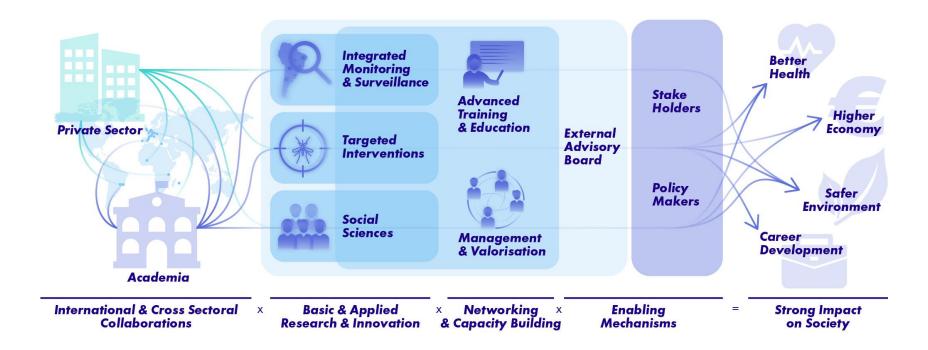

Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges

Methods for tracking insecticide resistance



Advantages and drawbacks of detection methods

Methods	Advantages	Disadvantages
Biological assays		
Diagnostic concentrations	Standardized Simple and rapid to perform Detect resistance phenotype	Lack of sensitivity No information on level or type of resistance Few diagnostic doses available for <i>Aedes</i> spp. Require live mosquitoes Require universal quality insecticides
Dose-response assays	Measure resistance levels	Require large number of live mosquitoes Require a susceptible reference colony
Assays using synergists	Information on the potential mechanisms responsible for resistance	Lack of sensitivity and specificity Require large number of live mosquitoes
Biochemical assays measuring enzyme activities	Information on mechanisms responsible for resistance Several mechanisms tested on a single individual	Require a cold chain Not available for all resistance mechanisms Lack of sensitivity/specificity
Molecular assays to detect resistant alleles	Very sensitive Several mechanisms tested on single individuals Detect recessive alleles and provide an "early warning" of future resistance	Require specialized and costly equipment Only available for a limited number of resistance mechanisms Are not always easily linked to resistance levels


Framework for implementation of IRM

Conceptual framework of the INOVEC project

