Complexity of evolutionary process helps maintain genetic variation

Patrik Nosil

Genetic variation is the fuel for evolution

Many forms of selection and random drift deplete genetic variation

So, how is variation maintained over long-time periods?

Directional evolution (transient variation)

1) Timema stick insect system

2) Maintaining genomic variation for diet

3) Evolution of host preference

Zach Gompert

M. Muschick photo

the model and the

Multiple species across California

Riesch et al. 2017 Nature EE

A. Comeault photo

Rely on crypsis for survival against visual predators

Nosil and Crespi 2006 PNAS

R. Villoutreix photo

M. Muschick photo

A. Comeault photo

M. Muschick photo

M. Muschick photo

Timema use a wide range of host plants in their diet

Muschick et al. 2020 Phil Trans B

Multiple reference genomes

Soria-Corrasco *et al.* 2014 *Science* Nosil *et al.* 2018 *Science* Villoutreix *et al.* 2021 *Science* 1) Timema stick insect system

2) Maintaining genomic variation for diet

3) Evolution of host preference

Redwood is a particularly challenging host

Larose et al. 2020 Ecology Letters

Complexity of evolutionary process provides resilience against loss of genetic variation

Patrik Nosil Victoria Soria-Corrasco Romain Villoutreix Marisol De la Mora Curiel Clarissa F. de Carvalho Thomas Parchman Jeffrey L. Feder Zachariah Gompert 1) Genetic scan

2) Compare independent genome assemblies

3) Experimental analysis of fitness

4) Modeling of allele-frequency variation

Strong genetic differentiation restricted to one LG in RW feeding comparisons

Strong genetic differentiation restricted to one LG in RW feeding comparisons

Studied Redwood and *Ceanothus* feeding populations

Delimited the Perform locus and studied its evolution

Delimited the Perform locus and studied its evolution

Perform is an ancient (~5-10 MYA) chromosomal inversion

T.kulli vs T. cristinae

Perform is an ancient (~5-10 MYA) chromosomal inversion

Experimental genetic analysis of fitness

Experimental genetic analysis of fitness

Perform affects fitness via a life-history trade-off

Perform affects fitness via a life-history trade-off

Perform affects fitness via a life-history trade-off

Perform affects fitness via a life-history trade-off

Perform affects fitness via a life-history trade-off

Balancing selection

Perform exhibits divergent allele-frequencies between hosts (~50% difference in 'growth allele')

Modeled a combination of processes

Modeled a combination of processes

- balancing with gene flow
- directional with gene flow
- balancing no gene flow

- balancing with gene flow
- directional with gene flow
- balancing no gene flow

- balancing with gene flow
- directional with gene flow
- balancing no gene flow

Complexity of evolutionary process provides resilience against loss of genetic variation

Patrik Nosil Victoria Soria-Corrasco Romain Villoutreix Marisol De la Mora Curiel Clarissa F. de Carvalho Thomas Parchman Jeffrey L. Feder Zachariah Gompert

M. Muschick photo

M. Muschick photo

Divergent morph frequencies between hosts

Nosil et al. 2018 Science

Predictable fluctuations in color-pattern morph frequencies

Nosil et al. 2018 Science

NFDS: fitness depends on frequency

NFDS: fitness depends on frequency

NFDS: fitness depends on frequency

Predictable fluctuations in color-pattern morph frequencies

Nosil et al. 2018 Science

1) Genetic scan

2) Compare independent genome assemblies

3) Experimental analysis of fitness

4) Modeling of allele-frequency variation

Once again, combined processes best maintain variation

Many forms of selection and random drift deplete genetic variation

So, how is variation maintained over long-time periods?

Modeled a combination of processes

Complexity of evolutionary process provides resilience against the loss of genetic variation

Complexity of evolutionary process provides resilience against the loss of genetic variation

Directional selection

Life-history trade-off

Migration

Directional selection

NFDS

Migration

What about preferences?

Divergent host-plant preferences can cause reproductive isolation, and thus affect speciation

Divergent host-plant preferences can cause reproductive isolation, and thus affect speciation

1) Timema stick insect system

2) Maintaining genomic variation for diet

3) Evolution of host preference

PHILOSOPHICAL TRANSACTIONS B

royalsocietypublishing.org/journal/rstb

Adaptive zones shape the magnitude of premating reproductive isolation in *Timema* stick insects

Moritz Muschick^{1,2,3,†}, Víctor Soria-Carrasco^{1,4,†}, Jeffrey L. Feder⁵, Zach Gompert⁶ and Patrik Nosil^{1,7}

Simpson's adaptive zones applied to preference evolution

Muschick et al. 2020 Phil Trans B

Simpson's adaptive zones applied to preference evolution

Muschick et al. 2020 Phil Trans B
Shifts between plant divisions are rare (~1 every 10 MY)

Shifts between plant divisions are rare (~1 every 10 MY)

Shifts between plant divisions are rare (~1 every 10 MY)

Shifts between plant divisions generate preference evolution

divergence in host-plant use

Shifts between plant divisions generate preference evolution

divergence in host-plant use

Shifts between plant divisions generate preference evolution

divergence in host-plant use

Simpson's adaptive zones applied to preference evolution

Genetic variation is the fuel for evolution

Punchline:

Rather than being a nuisance, complexity of process may provide resilience against the loss of genetic variation, modulating preference evolution

R. Villoutreix photo

"Even if it were possible to randomize the alleles at a single locus with respect to the rest of the genome ... it would be a useless occupation.

Genes in populations do not exist in random combinations with other genes. ...

context and interaction are not simply second-order effects [they are] ... of the essence"

Lewontin 1974, pp. 318

European Research Council

